Package: fasjem 1.1.2

fasjem: A Fast and Scalable Joint Estimator for Learning Multiple Related Sparse Gaussian Graphical Models

This is an R implementation of "A Fast and Scalable Joint Estimator for Learning Multiple Related Sparse Gaussian Graphical Models" (FASJEM). The FASJEM algorithm can be used to estimate multiple related precision matrices. For instance, it can identify context-specific gene networks from multi-context gene expression datasets. By performing data-driven network inference from high-dimensional and heterogonous data sets, this tool can help users effectively translate aggregated data into knowledge that take the form of graphs among entities. Please run demo(fasjem) to learn the basic functions provided by this package. For more details, please see <http://proceedings.mlr.press/v54/wang17e/wang17e.pdf>.

Authors:Beilun Wang [aut, cre], Yanjun Qi [aut]

fasjem_1.1.2.tar.gz
fasjem_1.1.2.zip(r-4.5)fasjem_1.1.2.zip(r-4.4)fasjem_1.1.2.zip(r-4.3)
fasjem_1.1.2.tgz(r-4.4-any)fasjem_1.1.2.tgz(r-4.3-any)
fasjem_1.1.2.tar.gz(r-4.5-noble)fasjem_1.1.2.tar.gz(r-4.4-noble)
fasjem_1.1.2.tgz(r-4.4-emscripten)fasjem_1.1.2.tgz(r-4.3-emscripten)
fasjem.pdf |fasjem.html
fasjem/json (API)

# Install 'fasjem' in R:
install.packages('fasjem', repos = c('https://blw921.r-universe.dev', 'https://cloud.r-project.org'))

Bug tracker:https://github.com/qdata/jem/issues

Datasets:
  • exampleData - A simulated toy dataset that includes 2 data matrices (about 2 related tasks).

On CRAN:

1.20 score 16 scripts 174 downloads 6 exports 11 dependencies

Last updated 8 years agofrom:ef01db8ce9. Checks:7 OK. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKJan 24 2025
R-4.5-winOKJan 24 2025
R-4.5-linuxOKJan 24 2025
R-4.4-winOKJan 24 2025
R-4.4-macOKJan 24 2025
R-4.3-winOKJan 24 2025
R-4.3-macOKJan 24 2025

Exports:fasjemnet.degreenet.edgesnet.hubsnet.neighborsplot.fasjem

Dependencies:clicpp11glueigraphlatticelifecyclemagrittrMatrixpkgconfigrlangvctrs