Package: fasjem 1.1.2

fasjem: A Fast and Scalable Joint Estimator for Learning Multiple Related Sparse Gaussian Graphical Models

This is an R implementation of "A Fast and Scalable Joint Estimator for Learning Multiple Related Sparse Gaussian Graphical Models" (FASJEM). The FASJEM algorithm can be used to estimate multiple related precision matrices. For instance, it can identify context-specific gene networks from multi-context gene expression datasets. By performing data-driven network inference from high-dimensional and heterogonous data sets, this tool can help users effectively translate aggregated data into knowledge that take the form of graphs among entities. Please run demo(fasjem) to learn the basic functions provided by this package. For more details, please see <http://proceedings.mlr.press/v54/wang17e/wang17e.pdf>.

Authors:Beilun Wang [aut, cre], Yanjun Qi [aut]

fasjem_1.1.2.tar.gz
fasjem_1.1.2.zip(r-4.5)fasjem_1.1.2.zip(r-4.4)fasjem_1.1.2.zip(r-4.3)
fasjem_1.1.2.tgz(r-4.4-any)fasjem_1.1.2.tgz(r-4.3-any)
fasjem_1.1.2.tar.gz(r-4.5-noble)fasjem_1.1.2.tar.gz(r-4.4-noble)
fasjem_1.1.2.tgz(r-4.4-emscripten)fasjem_1.1.2.tgz(r-4.3-emscripten)
fasjem.pdf |fasjem.html
fasjem/json (API)

# Install 'fasjem' in R:
install.packages('fasjem', repos = c('https://blw921.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/qdata/jem/issues

Datasets:
  • exampleData - A simulated toy dataset that includes 2 data matrices (about 2 related tasks).

On CRAN:

1.20 score 16 scripts 171 downloads 6 exports 11 dependencies

Last updated 7 years agofrom:ef01db8ce9. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKOct 26 2024
R-4.5-winOKOct 26 2024
R-4.5-linuxOKOct 26 2024
R-4.4-winOKOct 26 2024
R-4.4-macOKOct 26 2024
R-4.3-winOKOct 26 2024
R-4.3-macOKOct 26 2024

Exports:fasjemnet.degreenet.edgesnet.hubsnet.neighborsplot.fasjem

Dependencies:clicpp11glueigraphlatticelifecyclemagrittrMatrixpkgconfigrlangvctrs